www.iiiWe.com » تحلیل کامپیوتری سازه ها

 صفحه شخصی علی عباسی   
 
نام و نام خانوادگی: علی عباسی
رشته: کارشناسی ارشد عمران - پایه نظام مهندسی: سه
تاریخ عضویت:  1389/02/05
 روزنوشت ها    
 

 تحلیل کامپیوتری سازه ها بخش عمومی

6

در مدل ‌سازی سازه‌ها باید به موارد زیر توجه داشت:
1) مدل سازی تنها یک شبیه سازی یا بهتر بگوئیم تلاشی برای شبیه سازی سازه واقعی می‏باشد.
2) فرآیند شبیه سازی بسته به نوع واکنش مورد نظر متفاوت بوده و می‏تواند بسیار متفاوت باشد.
‎‎ 3) فرآیند شبیه سازی بستگی مستقیمی به نوع بارگذاری و شرایط مرزی سازه‌ی مورد نظر دارد.
سه مورد فوق به همراه تکنیکهای مدل سازی ریاضی که جزو امکانات نرم افزار مورد استفاده هستند می‏بایست در فضای تقریب یا فضای دقت پیاده سازی شوند. باید توجه داشت که سازه واقعی دارای بینهایت درجه آزادی می‏باشد. به دلیل محدودیتهای نرم افزاری، سخت افزاری و یا هزینه های اجرا (زمان و غیره) معمولاً ‌ترجیح دارد که سازه با حداقل تعداد ممکن درجات آزادی بررسی شود. در این صورت خروجی نرم افزارهای تحلیل توأم با خطاهایی ناشی از این امر خواهد بود. در عین حال دقت مورد نیاز در مهندسی کاربردی با مهندسی پژوهشی متفاوت بوده و بسته به حساسیت واکنشهای مورد نظر دقت تحلیل و در نتیجه درجات آزادی مورد نظر تعیین می‏شوند. ‎‎‎‎‎‎‎‎‎‎‎‎‎‎ ‎‎‎

اینکه دقت یک تحلیل به خصوص سازه ای چقدر باید باشد، یک مطلب کاملاً تخصصی و دور از حوصله این نوشتار است. توصیه می‏شود کاربران محترم (خوانندگان محترم) در این رابطه از افراد با تجربه کمک بگیرند.
تکنیکهای مدلسازی شامل روشهای استاندارد و کمکی مدلسازی سازه ای در نرم افزارهای شاخصی نظیر STAAD.Pro، SAP2000 و ETABS می‏باشند. معمولاً افرادی که با نرم افزارهای ترسیمی برداری نظیر اتوکد در فضای سه بعدی کارکرده اند، با این تکنیک‏ها آشنا هستند. محیط ارائه شده برای ترسیم هندسی سازه در نرم افزارهای STAAD.Pro، SAP2000 و ETABS مانند محیط اتوکد می‏باشد. این محیط در حقیقت یک فضای مجازی سه بعدی است که کاربر می‏تواند در این فضا با استفاده از سه عنصر اولیه نقطه، خط و صفحه، کالبدسازه ای موردنظر خود را ترسیم نماید. علاوه بر ترسیم مستقیم این عناصر می‏توان با استفاده از دستورات کمکی نظیر Move ، Replicate با جابجایی و کپی از عناصر اولیه به ترکیبات پیچیده تر نیز دست یافت.
امکانات ارائه شده در برنامه‌های ذکر شده نظیر برنامه اتوکد می‏باشد با این تفاوت که در برنامه اتوکد می‏توان دستورات ترسیم و غیره را از طریق نوار دستورات (Command Line) نیز وارد نمود و حال آنکه این برنامه ها تنها از طریق جعبه ابزار(Toolbar) های به خصوصی قابل دسترسی هستند. (به استثنای برنامه‌ی STAAD.ProSTAAD Editor امکان واردکردن مستقیم دستورات ترسیم، بارگذاری، تحلیل و پس پردازش سازه را به راحتی مهیا نموده است).
استفاده از امکاناتی نظیر واردکردن مستقیم دستورات از طریق صفحه کلید (Keyboard) می‏تواند سرعت و تسلط کاربر ماهر را چندین برابر کند. از اینرو انتظار می‏رود این امکان در نسخه های آتی این نرم افزارها گنجانیده شود. استفاده مفید و موثر از دستورات کمکی یاد شده در فوق برای ترسیم هندسی سازه، مستلزم تمرین و مهارت کاربر در تجزیه سازة پیچیده به اجزاء ساده تر می‏باشد. در این راه کاربر می‏بایست تجزیه را به اندازه کافی انجام دهد تا در کمترین زمان ممکن به حجم کلی سازه دست یابد.
معمولاً در سازه های متداول نظیر ساختمانهای مسکونی، برجها، پلها، تونلها و یا حتی در سازه های پیچیده تر نظیر برجهای خنککن و سازه ‏های صنعتی تشابه به برخی از اجزاء به‏ ‏صورت تشابه مستقیم و یا تشابه معکوس وجود دارد.
به عنوان مثال در ساختمانهای مسکونی معمولی، طبقات مختلف به ‏لحاظ سازه ای و معماری ممکن است مشابه یکدیگر باشند. به عنوان مثالی دیگر می‏توان به سازه های قرینه‌ی محوری نظیر سیلوها، برج خنک کننده و غیره اشاره داشت. اینگونه سازه ها با ترسیم اولیه مسیر هادی و سپس چرخاندن آن به حول محور دوران پدید می‏آیند. که به کمک برنامه‌ی از پیش تعیین شده‌ی

‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎ ‎‎‎‎‎ ‎‎‎‎‎‎‎‎ ‎‎‎‎‎‎‎‎‎‎ ‎‎‎‎‎‎‎‎‎کاربران حرفه ‏ای نرم افزارهای تحلیل و طراحی اغلب تمایل دارند تا از امکانات وسیعی که در دیگر نرم افزارها ارائه شده است نیز بهره بگیرند. به عنوان مثال بعضی از کاربران تمایل دارند تا از نرم افزارهای محاسباتی نظیر MathCAD و یا از نرم افزارهای صفحه گسترده نظیر Excel برای تولید مختصات گره ها و یا توالی المانها استفاده نمایند. استفاده از امکانات محاسباتی اینگونه نرم افزارها می‏تواند کمک شایانی در تولید اطلاعات سازه های پارامتریک نماید.

طراحان برنامه های STAAD.Pro، SAP2000 و ETABS با علم به این موضوع امکانی را در این برنامه ها پیشاند که بتوان اطلاعات کلی هندسه‌ی سازه نظیر گره ها و المانها را با کپی(Copy) و برچسب ((Pasteها و محیط Excel

یکی دیگر از امکاناتی که در نسخه های اولیه این برنامه‌ها گنجانده شده است امکان واردکردن فایلهای با فرمت DXFDXF مخفف (Drawing Interchange Format) یا فرمت تبادل ترسیمات در سیستم اتوکد است. فایل‏های با این فرمت را می‏توان در دیگر برنامه ها نیز به کار گرفت و یا اینکه توسط دیگر برنامه های کمکی اتوکد تولید نمود.

از آنجاییکه این فایلها با فرمت نوشتاری ASCII - American Standard Code for Information Interchange تولید می‏شوند، استفاده از آن بسیار ساده بوده و از اینروست که برنامه های جانبی اتوکد و یا دیگر سیستمهایی که به نوعی تبادل اطلاعات می‏کنند، اغلب از این فرمت استفاده می‏نمایند. فایلهای با این فرمت کلیة اطلاعات ترسیمات انجام شده در اتوکد را دارا می‏باشد و در حقیقت معادل مستقیم فایلهای استاندارد اتوکد با فرمت DWG هستند.

توانایی ترسیمات سه بعدی در نرم افزار اتوکد بسیار وسیع و کامل است و می‏تواند در مدلسازی سازه های پیچیده بسیار موثر واقع گردد. از اینرو قویاً توصیه می‏گردد تا با تمرین فراوان و کسب مهارت و تسلط برروی این نرم ‏افزار و نحوه ورود و خروج اطلاعات به برنامه های تحلیل سازه، توانایی مدلسازی خود را افزایش دهید.

از دیگر روشهای تولید هندسی سازه، برنامه نویسی مستقیم می‏باشد. با این روش می‏توان فایل حاوی اطلاعات هندسی سازه های پارامتریک را به فرمت Excel یا DXF و یا هر فرمت مناسب دیگری تولید نمود. البته با وجود امکانات برنامه ای که در نرم ‏افزارهای محاسباتی و یا صفحه گسترده ارائه شده است، معمولاً کمتر پیش می‏ آید که امروزه مهندسان تمایل به برنامه ریزی مستقیم از خود نشان دهند ولی با این وجود این روش کماکان در موارد خاص کارآیی خود را خواهد داشت.

روشهایی که در بالا توضیح داده شدند، تنها روشهای ترسیم هندسی معادلِ ریاضی یا شبیه سازی شده از سازه‌ی واقعی هستند. بینی کرده ساده بین محیط این برنامه رد و بدل نمود. است.

‎‎‎

گاهی اوقات در سازه‌ی حقیقی شرایطی وجود دارد که این معادل‎سازی را قدری دشوار می‏‎کند، به ‎‎عنوان مثال می‏‎توان به موارد زیر اشاره داشت:

در این صورت علاوه بر اینکه فرض استفاده از المان خطی با بعد صفر تا حدودی زیر سؤال می‏‏رود، سؤالی که پیش می‏‎آید آن است که تراز مشترک تیرهای واقع در یک طبقه کجا باید انتخاب شود و اینکه اثر این خروج از محوریت چه مقدار است و در چه شرایطی قابل اغماض می‏‎باشد و در چه شرایطی و چگونه می‏‎توان آنرا برآورد نمود؟

فصل مشترک اتصال بین تیرها و ستون‎های متقاطع با یکدیگر را گره می‏نامیم. در اغلب برنامه‎ های کامپیوتری که برای مدل‎سازی المان‎های نظیر تیرها و ستون‎ها، از المان‎های خطی استفاده می‏‎شود، گره به یک نقطه بدون بعد بدل می‏‎شود.

اینکه اثرات تغییر شکل‎‏‏های داخلی گره و یا جاری شدگی‎ها و ترک ‎خوردن‎ها تا چه حد باعث دور شدن گره از یک گره‌ی ایده ‎آل (که فرض می‏‎شود هیچ تغییر شکل نسبی در آن اتفاق نمی‎افتد) می‏‎شود، بحث مهمی است که در حد حوصله این نوشتار نیست ولیکن باید به ‎خاطر داشت که تحت شرایطی این فرض دیگر صحیح نبوده و ممکن است پاسخ‎ها را کم ارزش نماید.


در خصوص مدل‎سازی این قبیل اجزا سازه ‎ای نکاتی چند را باید در نظر داشت:

درست مانند آنکه بخواهیم یک منحنی پیچیده و نامعلوم را با سری خطوط راست تقریب بزنیم. در این صورت به لحاظ ریاضی می‏‎توان گفت که هر چقدر این تقسیم‎ بندی بیشتر انجام شود، ‌به جواب واقعی نزدیکتر می‏‎شویم.

در عمل محدودیت‎های دیگری نیز وجود دارند که تعداد المان‎های سازه ‎ای را محدود می‏‎کنند، از آن جمله می‏‎توان به افزایش خطای عددی و در بعضی اوقات ناپایداری عددی سازه و به زمان انجام تحلیل و محدودیت‎های نرم ‎افزاری و سخت‎ افزاری و مهمتر از همه به هزینه‎ های تحلیل اشاره کرد. در عین حال همانطور که پیشتر در بحث فضای دقت گفته شد، دقت می‏‎بایست متناسب با نوع کاربرد تنظیم شود چه درغیر اینصورت منجر به تلف شدن سرمایه خواهد گردید.

باید بخاطر داشت که تعداد بهینه المان‎ها آن حداقلی است که بتواندپاسخ‎های مورد نظر را در حوزه دقت مورد نیاز در زمان مناسب و متناسب با امکانات موجود فراهم نماید. انتخاب این تعداد از طرفی بستگی به نوع بارگذاری،‌ شرایط تکیه ‎گاهی و نوع تحلیل نیز داشته و دستورالعمل کلی برای آن وجود ندارد و می‏‎بایست به تجربه و از طریق آزمایش تعیین گردد. 1- تیرهای عمیق و یا عریض
2- اثر گره ‎ها
3- احجام توپر نظیر دال‎ها، فونداسیون‎ها و دیوارها
3-1) معادله رفتاری مناسب برای این جزء چیست؟ همانطور که می‏‎دانیم این معادله رفتاری به سه صورت غشایی، خمشی و پوسته‎ای (حاصل جمع غشایی و خمشی) در این برنامه ‎ها معرفی شده است. انتخاب صحیح معادله رفتاری بسیار مهم بوده و هرگاه این انتخاب به درستی صورت نگیرد منجر به بی‎ اعتباری پاسخ‎های دریافت شده می‏‎گردد.
3-2) کفایت مش بندی - در مدل‎سازی به روش اجزاء محدود، روش تجزیه یک محیط پیوسته نامحدود با توزیع تنش و کرنش پیچیده و نامشخص به یک سری المان‎های محدود، به کمک توابع رفتاری مشخص و توزیع تنش و کرنش قابل پیش ‏بینی در سطح المان انجام می‏‎گیرد.

سه شنبه 7 اردیبهشت 1389 ساعت 18:36  
 نظرات    
 
رابین صدیق پور 12:38 چهارشنبه 8 اردیبهشت 1389
3
 رابین صدیق پور
با سلام
از مطلب ارزشمند ارسالی توسط شما، بسیار متشکرم.